Some Recent Advances on Steiner Trees and Related Problems

Siavash Vahdati Daneshmand
Tobias Polzin

Institut für Informatik, Universität Mannheim
Max-Planck-Institut für Informatik, Saarbrücken
Recent Advances on Steiner Trees

Outline

• Steiner tree problem
 – basics
 – FST approach

• minimum spanning tree in hypergraph
 – comparison of relaxations

• recent successful techniques
 – extended reduction methods
 – use of low connectivity
 – local generation of cutting planes
The Steiner Tree Problem in Networks

- **instance:**
 - network $G=(V,E,c)$
 - terminals R

- **solution:**
 - subnetwork of G spanning R
 - minimum cost
The Steiner Tree Problem in Networks

- **instance:**
 - network $G=(V,E,c)$
 - terminals R

- **solution:**
 - subnetwork of G spanning R
 - minimum cost

SMT: Steiner Minimal Tree
Recent Advances on Steiner Trees

Applications, Theoretical Results

- fundamental network design problem
- applications:
 - routing
 - pipeline-planning
 - VLSI-design
 - phylogenetic trees
- theoretical results:
 - NP-hard, APX-complete
 - best known approximation algorithm:
 performance ratio ≈ 1.55
(Di-)Cut Formulation

- (bidirected) arc set A
- Choose root $z_1 \in R$, $R_1 = R - z_1$
- for each terminal $z \in R_1$, send one unit of (corresponding) flow from root to z

$$\begin{align*}
P_C \quad & \sum_{a \in A} c_a y_a \to \min, \\
& \sum_{a \in \delta^{-}(S)} y_a \geq 1 \quad (z_1 \notin S, \ S \cap R_1 \neq \emptyset), \\
& y_a \in \{0, 1\} \quad (a \in A).
\end{align*}$$
Recent Advances on Steiner Trees

(Dis-)Cut Relaxation

- **flow/cut relaxation:**
 - relaxing integrality constraints
 - solution: rational vector not (arcwise) smaller than the flow vectors (Example: $v(LP_c) = 7.5$)

- **integrality gap:**
 - worst known case: 8/7
 - current guarantee: 2
 (3/2 for quasi-bipartite graphs)

Linear solution (blue and green flows 0.5, value 7.5)
FST Method for (Geometric) Steiner Problems

• Full Steiner Tree (FST): tree with no inner terminal

• FST generation: set F of FSTs which contains an SMT

• FST concatenation: subset of F whose concatenation is an SMT
MSTH Approach for FST Concatenation

- Consider terminal sets of FSTs as edges of a hypergraph
- Find a minimum spanning tree in hypergraph (MSTH)
- MSTH problem is NP-hard
Recent Advances on Steiner Trees

MSTH: Packing Formulation

$$
\begin{align*}
\min \quad & \sum_{T \in F} c_T X_T \\
\text{s.t.} \quad & \sum_{T \in F} (|T| - 1) X_T = |R| - 1, \\
& \sum_{T, T \cap S \neq \emptyset} (|T \cap S| - 1) X_T \leq |S| - 1 \quad (\emptyset \neq S \subseteq R), \\
& X_T \in \{0, 1\} \quad (T \in F).
\end{align*}
$$
Recent Advances on Steiner Trees

MSTH: Packing Formulation, Directed

\[P_{\text{FST}} \sum_{\vec{T} \in \vec{F}} c_{\vec{T}} x_{\vec{T}} \to \min, \]

\[\sum_{\vec{T} \in \vec{F}} (|\vec{T}| - 1)x_{\vec{T}} = |R| - 1, \]

\[\sum_{\vec{T}, \vec{T} \in \Delta^-(z_i)} x_{\vec{T}} = 1 \quad (z_l \in R_1), \]

\[\sum_{\vec{T}, \vec{T} \cap S \neq \emptyset} (|\vec{T} \cap S| - 1)x_{\vec{T}} \leq |S| - 1 \quad (\emptyset \neq S \subset R), \]

\[x_{\vec{T}} \in \{0, 1\} \quad (\vec{T} \in \vec{F}). \]
Recent Advances on Steiner Trees

MSTH: Packing Formulation, Directed

\[
\begin{align*}
\text{min,} & & \sum_{\bar{T} \in \bar{F}} c_{\bar{T}} x_{\bar{T}} \\
\text{s.t.} & & \sum_{\bar{T} \in \bar{F}} (|\bar{T}| - 1) x_{\bar{T}} = |R| - 1, \\
& & \sum_{\bar{T}, \bar{T} \in \Delta^{-}(z_i)} x_{\bar{T}} = 1 \quad (z \in R), \\
& & \sum_{\bar{T}, \bar{T} \cap S \neq \emptyset} (|\bar{T} \cap S| - 1) x_{\bar{T}} \leq |S| - 1 \quad (\emptyset \neq S \subset R), \\
& & x_{\bar{T}} \in \{0, 1\} \quad (\bar{T} \in \bar{F}).
\end{align*}
\]

\(LP_{FST} \rightarrow \) is equivalent to \(LP_{FST} \)
Recent Advances on Steiner Trees

MSTH: Directed Cut Formulation

\[P_{FSC} \quad \sum_{\bar{T} \in \bar{F}} c_{\bar{T}} x_{\bar{T}} \rightarrow \min, \]
\[\sum_{\bar{T}, \bar{T} \in \Delta^-(S)} x_{\bar{T}} \geq 1 \quad (z_1 \notin S, \ S \cap R_1 \neq \emptyset), \]
\[x_{\bar{T}} \in \{0, 1\} \quad (\bar{T} \in \bar{F}). \]

Algorithmik grosser und komplexer Netzwerke
Recent Advances on Steiner Trees

MSTH: Directed Cut Formulation

\[\begin{align*}
P_{FSC} & \quad \sum_{\tilde{T} \in \tilde{F}} c_{\tilde{T}} x_{\tilde{T}} \rightarrow \min, \\
& \quad \sum_{\tilde{T}, \tilde{T} \in \Delta^{-}(S)} x_{\tilde{T}} \geq 1 \quad (z_1 \notin S, \ S \cap R_1 \neq \emptyset), \\
& \quad x_{\tilde{T}} \in \{0, 1\} \quad (\tilde{T} \in \tilde{F}).
\end{align*} \]

\[\text{LP}_{FSC} \text{ is equivalent to } \text{LP}_{FST} \]

Algorithmik grosser und komplexer Netzwerke
Comparison of MSTH and SMT Relaxations

• worst case perspective:
 – \(LP_{FSC} \) is (strictly) stronger than \(LP_{C} \)
 – Note: \(\nu(LP_{FSC}) \) depends on the choice of FSTs

• empirical:
 – Both methods usually yield the same value

<table>
<thead>
<tr>
<th>instance group</th>
<th>(LP_{FST})</th>
<th>(LP_{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gap (%)</td>
<td>time (s)</td>
</tr>
<tr>
<td>ES1000FST</td>
<td>0.0078</td>
<td>99.2</td>
</tr>
<tr>
<td>TSPFST</td>
<td>0.009803</td>
<td>129.6</td>
</tr>
</tbody>
</table>
Recent Advances on Steiner Trees

Reductions: Extending the Scope

- **basic idea:** extending the scope beyond single vertices, edges
- **our approach:** combined use of alternative- and bound-based methods
 - alternative-based: cheaper MST/SMT for leaves with respect to Steiner bottleneck distances
 - bound-based: lower bound above upper bound for all orientations
 - complementary strength: different combinations excluded with different methods
Recent Advances on Steiner Trees

Low Connectivity

- vertex separator $S \subset R$
- SMT T (unknown)
- T restricted to G_i: forest F_1
- F_1 yields a partition of S
- number of possible partitions:

$$B(|S|) = \sum_{i=1}^{\lfloor |S|/i \rfloor} \left\lfloor \frac{|S|}{i} \right\rfloor$$

| $|S|$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|------|---|---|---|---|---|---|---|
| cases | 2 | 5 | 15 | 52 | 203 | 877 | 4140 |
Local Approach: Reduction by Partitioning

- Compute (many) small vertex separators
 - up to $\Theta(|R|)$ separators of size at most k in time $O(k|R||E|)$
- Exact method:
 - compute optimum forests in G_2 for all cases
 (many cases can be ruled out by heuristics)
 - Contract common edges, delete unused edges
- Bound-based method:
 - Extend G_2 to G'_2,G''_2 using information from G_1
 - Compute upper bound in G'_2
 - Compute lower bound in G''_2 under some constraint
 (e.g., that a vertex must be included in the solution)
 - Constraint cannot be (optimally) satisfied if
 \[upper(G'_2) < lower_{constrained}(G''_2) \]
Global Approach: Dynamic Programming

- **bottom-up algorithm:**
 - choose a vertex v_1 as the first visited vertex
 - for $s = 2,...,|V|$
 - choose unvisited v_s adjacent to some visited vertex
 - for all currently valid partitions P in the border
 - for all choices I of sets in P adjacent to v_s
 - merge the sets in I via v_s at minimum cost, update P to P'
 - if $|P'|=1$ check whether a better Steiner tree is found

border after step s: $B_s = \{ v_i \in \{v_1,...,v_s \} | \exists (v_i,v_j) \in E : v_j \notin \{v_1,...,v_s \} \}$
max$\{|B_s| | 1 \leq s \leq |V|\}$ = $b \leftrightarrow$ path decomposition of G of width b
running time: $|V|2^{O(b \log b)}$
Recent Advances on Steiner Trees

Local Generation of Cutting Planes

- find optimum solution x^* of current LP
- find suitable components V_i in $(V, \{e \in E \mid x_e^* > 0\})$
- for all V_i of proper size:
 - shrink G, x^* to G_1, x_1^* by contracting all V_j, $j \neq i$
- initialize matrix T with (the incidence vector of) a Steiner tree for G
- repeat
 - $a^* = \arg \min \{x^* a \mid Ta \geq 1, \ a \geq 0\}$
 - if $x^* a^* \geq 1$ break
 - find SMT t^* in G w.r.t. cost vector a^*
 - if $t^* a^* < 1$, add t^* to T
 - else
 - expand a^* to a^* in G
 - add $xa^* \geq 1$ to LP
 - break
Recent Advances on Steiner Trees

FL1400fst (after FST generation)

|V| = 2694 |E| = 4546 |R| = 1400

Algorithmik großer und komplexer Netzwerke
Recent Advances on Steiner Trees

FL1400fst: after some reductions

$|V|=1871$ $|E|=3474$ $|R|=937$

Algorithmik grosser und komplexer Netzwerke
Recent Advances on Steiner Trees

FL1400fst: reduced instance

\[|V| = 1871 \quad |E| = 3474 \quad |R| = 937 \]

Algorithmik grosser und komplexer Netzwerke
Recent Advances on Steiner Trees

FL1400fst: a component

|V| = 427 \quad |E| = 796 \quad |R| = 215 \quad b = 9

Algorithmik grosser und komplexer Netzwerke
Recent Advances on Steiner Trees

ES10000: the terminals

$|R| = 10000$

Algorithmik grosser und komplexer Netzwerke
Recent Advances on Steiner Trees

ES10000: after FST generation

|V| = 27019 |E| = 39407 |R| = 10000

Algorithmik grosser und komplexer Netzwerke
Recent Advances on Steiner Trees

ES10000fst: after some reductions

$|V| = 10865 \quad |E| = 17764 \quad |R| = 4322$
Recent Advances on Steiner Trees

ES10000fst: reduced instance

|V| = 10865 |E| = 17764 |R| = 4322

Algorithmik grosser und komplexer Netzwerke
Recent Advances on Steiner Trees

ES10000fst: after reduction by partitioning

\[|V| = 4197 \quad |E| = 6927 \quad |R| = 1614 \]